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We examine the nonisothermal steady~state flow of a Newtonian fluid between two parallel
plates with consideration of the energy dissipation and in the assumption of a hyperbolic re-
lationship between viscosity and temperature under various temperature boundary conditions.
It is assumed that the upper plate is moving at a constant speed and that there is a pressure
difference across the space between the plates in the direction of plate motion.

The problem of a steady-state Couette flow of a viscous liguid with consideration of the heat of fric-
tion in the case of a hyperbolic relationship between the coefficient of viscosity and temperature is examined
in a number of references [1-3]. With precisely this relationship between viscosity and temperature Hausen-
blas investigated the dynamic flow of a liquid in a flat tube [4]. In reference [5], under temperature bound-
ary conditions of the first kind, Regirer examined the flow between two parallel plates, one of which is
moving at a constant velocity, while a pressure difference is set up across the clearance in the direction
of plate motion. The author did not investigate the derived solution,

It should be noted that in the dynamic flows examined in [4, 5] there is a critical value for the pres-
sure gradient above which it is impossible to have a steady-state regime, a fact not noted by the authors.
Kaganov, in [6], was the first to draw attention to the possibility that critical flow regimes could exist.
Examining the flow in a flat tube for the general form of the relationship between viscosity and temperature,
Kaganov employed the methods of integral analysis to demonstrate that this relationship is hyperbolic or
stronger than hyperbolic; there exists a critical value for the pressure gradient above which a steady-state
flow regime is impossible.

This paper is devoted to a study of generalized Couette flow, i.e., the flow of a liquid between two
parallel plates, one of which is moving at a constant velocity, with a pressure gradient of constant mag-
nitude across the clearance between the plate. It is assumed that the
viscosity is a hyperbolic function of temperature. We examine three

AT types of temperature boundary conditions: a) both plates are kept at con-
\ stant temperatures that, in the general case, are different; b) the upper
161X plate has been thermostated, with Newtonian heat transfer to the ambient
\ - ’ medium taking place through the bottom plate; c¢) Newtonian heat trans-
12 ¢ - z fer with an identical value for ¢; occurring through both plates.
\\ 1. Let a layer of a viscous liquid be situated between two infinite
06 P plates y = — h and y = h, the upper plate moving at a constant velocity v
I~ in the direction of the x-axis. A pressure gradient constant in magnitude
" is found in the clearance between the plate, i.e., dp/dx =A >0. The
"o ‘ 2 7 Mo constant temperatures T, and T, are specified for the plates. It is as-

! ed that the viscosity is a hyperbolic function of temperature, i.e.,
Fig. 1. Limit values of 7 sum a viscosily 18 a yper P

as a function of ®: 1) exact
values; 2) approximate val-
ues (from (1.16)).

W= I—-{——[SZ,(F;Q————TZ) (g, B = const). (1.1)
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The system of equations of motion and heat balance with congideration of energy dissipation is writ-

ten in the form
d do\ dzT p, do \?
EJ(\M‘@)—A, + (djj = 0. (1.2)

System (1.2) must be solved for the following boundary conditions:
v=0, T=T, wheny=—h; v=V,T=T, when y = h. {1.3)

From the first equation in (1,2) we have

== T = Ay — y,) 1.4

The system of equations (1.2) and the boundary conditions (1.3), with consideration of (1.4), can be
written in the form

®—w, G e, (L.5)
w=0, 0=0, whenk = E, = —1—n,; L6)
w=0a, 0=1whenf=2§, =1—n,

The solution of the second equation in (1.6) is expressed [7] in terms of the Bessel functions
-§_[r Jis (*%Z" §Z)+B;J_1/4<i§—§2”. {1.7)
For the calculations, it is convenient to present [7] the Bessel functions in (1.7) as power series
1o )”
) = _(2T_f (0, Fpl)= 3: ;,‘(; o 2. (%)ﬁ (1.8)
Using (1.8), we can write solution (1.7) in the form
0= AEfia (\—V; g ) + Byfis (%2 g ) , 1.9)

where A; and B, are new integration constants. Using the boundary conditions (1.6), we obtain

Aiz%:{eof—l/‘i (% §§>~— lt—l/éz(\i;~ E?)J

1 2 2 \
B, = AT{ AMESE AT R )] (1.10)

2 2 2
A, —§1f1/4(-2—§ )f—m (—;— Eg)—— §2f1/4(—;—§§)f~[/4 <%2§%)

Having integrated the first equation in (1.5) and using the boundary condition at the bottom plate, we obtain
the velocity profile

w=FE)—FE) (1.11)

where

F(8) = Aigra (8) + Byg—iis (B):

i
= (— l)k("‘_)! g2 3
g (®) = 8 ! ({;—&\2 :

(4k +3) k! < k (1.12)
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Having satisfied the boundary condition at the upper plate at (1.11), we find the equation for the determina-
tion of the integration constant:

F(&)—F () =a. (1.13)
The temperature and velocity profiles have thus been completely determined,

The Hausenblas results [4] are derived as a special case of the problem under consideration here,
when «= 0 and 95 =1,

Let us turn to an investigation of the derived solutions (1.9) and (1,11), We rewrite expression (1.4)
for the shearing stress in the form of 7/Ah = n— 7). Hence we see that the integration constant My is aquan-
tity which characterizes the shearing stress within the clearance and on the plates. At the same time, My
is the ordinate of the point at which the shearing stress vanishes, while the velocity gradient changes sign.
If the plates are nonmoving (& = 0) and exhibit identical temperature, then 1y = 0, while with various tem-
peratures for the plate 77y # 0 is found within the clearance,

We see from (1.10), (1.12), and (1,13) that @ — « as the determinant 4, tends toward zero. With an
increase in the plate velocity there will therefore be an increase in 7y, but it will remain smaller than some
limit magnitude determined by the first root of the equation A;(%, 1y) = 0. Thus. with an unbounded increase
in the plate velocity the shearing stress on the plate does not tend toward « as in the case of isothermal
flow, but it tends toward the limit. For pure Couette flow this fact had earlier been established in [1, 2].

It should be noted that with a finite value for « the quantity 7, determined from (1.13) is a function of
the temperature difference ©; at the boundaries of the region, and the limit value of 1, is independent of
0y, since the latter is not included in the expression for the determinant Ay (%, 7).

The solid line in Fig, 1 shows % as a function of 7, determined from the transcendental equation
Ay, my) = 0. As the point (., 7p) approaches the curve, the parameter & — — «_ It is not difficult to prove
that the determinant is an even function of n,. The point on the curve symmetrical with respect to the %~
axis are therefore also roots of the determinant, As the point with the coordinates (%, —7;) approaches this
curve @ — «, With a reduction in % the limit toward which the shearing stress tends as o *« increases.
As % — 0, which corresponds to the isothermal flow, this limit ig «,

Using the asymptotic expressions of the Bessel functions, it is not difficult to derive an analytical ex-
pression for the curve that is valid at small values of ®, Using (1.9) and the familiar relationships from
(71, i.e.,

. ax
J =1, (x) cos pm — N, (x) sin px, (—x)! = e
we can bring the determinant A, to the form
, B E w2\ n? 2 2
A= i&z [J1/4 (—2“ 125 ) N (T Ef) — J|/4(%T§f) Ny (—’;—«EZ,)] . (1.14)

Here N(x) is the Neumann function, We see from Fig, 1 that 7, increases with a reduction in %, with this
change taking place in a manner such that the arguments for the functions in (1.14) increase with a reduc-
tion in ®. Using the asymptotic expressions for the Bessel and Neumann functions

Jo () = l/}%c—cos( x—%ﬁ—%),
N, (%) =V%xsin( X — 112_31__:;_)’

1

L

Hence we see that the roots of the determinant A; and, consequently, the limit values for the shearing
stress are found from the simple relationship

we can bring (1.15) to the form

Ay = sin 2u?n,. 1.15)

T
Mo =5 - (1.16)
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Fig. 2. Curves for the limit values of 1, at various values of Bi:
1) Bi=0; 2)1; 3)10; 4) 100,

Fig. 3. Curves for the limit values of 1y for various values of
Bi: 1) Bi=0.01; 2)0.1; 3)1; 4)10; 5) 100; 6) o,

In Fig, 1 function (1,16) is shown by a dashed line. We see from the figure that when % = 1 the curves dif-
fer little from each other, while for » < 0.8 they virtually merge,

It is easy to derive a value of ® at which 7y = 1, since in this case £, = 0 and the roots of the determin-
ant coincide with the roots of the equation Ji/4(2%2) =0, The first root — different from zero — of this equa-
tion is given by ® = 1.18. If ® < 1,18, for small values of @ the point at which the velocity gradient is equal
to zero is situated within the clearance, while for large values of « it is situated outside of the clearance.
With » = 1,18 it is situated within the clearance for all values of «.

The curve in the case of 1y = 0 ends at the axis of ordinate at the point which is the first root of the
equation J_;/ (®¥/2) = 0, This value of ® = ®* = 2 ig critical. For all ® < »* there exists a steady-state
flow regime, while for » = n* a steady-state regime is impossible, and we have a thermal loss of stability,
As " approaches ®* there is a pronounced rise in both the temperatures and the velocities. It is interesting
to note that the critical value of ®* is independent both of the temperature difference across the plates and
of the plate velocity,

2. Now let the upper plate be thermostated at a temperature T,, and let the transfer of heat with the
ambient medium according to Newton's law proceed through the lower plate. Assuming that the temperature
of the ambient medium at considerable distance from the plate is given by Ty, we can write

dar
2\'71;],_ = — (T — Ta). (201)

The general solution for the heat-balance equation, as before, will be expressed in the form of (1.9),

which must be made subject to the boundary conditions

di
89 =1wheny=1, E?—:Bi(e —1) when = —1. (2.2}

With solution (1.9) satisfying boundary conditions (2.2) we find

_d—bBi

aBi—
Ah="mg— B £

By =

2.3)

where

Ay =ad—ch; a=Efiu(E); b=f-ia(E);
c=Big s () —1a &)y d=Bifoiu(B)—o0_1 (&
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Fig. 4. The values of n* as a function The velocity profile is determined from (1,11), while the in-
of log Bi: 1) exact values; 2) approxi- tegration constant 7, is obtained from (1.13), provided that the
mate values {from (3.4)). constants A; and By in the expression F () are replaced by A,

and Bg.

Unlike A; (%, ;) the denominator A, (%, 7g) is not an even function of the argument 7, and the limit val-
ues of 1y as @ — + « and @ — —w and fixed ® < ®* therefore do not coincide, Figure 2 shows the curves
giving the limit values of 1, as functions of the parameter % for various values of Bi number, All of the
curves pass through a maximum which determines the critical value of the parameter %, the left-hand part
of the curve determining the limit values of 1 as @ — + «, and the right-hand portion of the curve deter-
mining the limit value as @ — —», When ® = ®* there is no steady-state regime. The case Bi =0 corre-
sponds to satisfaction at the lower plate of a boundary condition of the second kind, i.e., an absence of heat
transfer with the ambient medium. In the case of a thermally insulated bottom plate the critical value is
given by ®* = 1,35, With an increase in Bi the curves rise and the apex approaches the axis of ordinates,
At the limit Bi — « we have the case of ideal heat transfer through the bottom plate, i.e., the condition of
constant temperature is satisfied at the bottom plate,

We see from (2.4) that the roots of the denominator A, at the limit as Bi — « coincide with the roots
of the denominator A;, Even when Bi = 100 the right-hand portion of the curve is virtually coincident with
the curve giving the functions relating % and 7, in Fig. 1. It follows from the above that at the limit as
Bi— », ®¥ =2,

Thus, as Bi increases from 0 to « the critical value of n* increases from 1.35 to 2, Calculations
show that ®* as a function of Bi can be approximated rather well with a simple fractional-linear function

.  2,18+201Bi

® = TET Bi 2.5)

The relative error in the determination of ®* according to (2.5) for all values of Bi does not exceed
0.6%.

3. Let us examine the case in which heat transfer according to Newton's law (2.1) proceeds through
both plates to the ambient medium. Assuming that the temperature of the ambient medium at some dis-
tance from the plate is given by T,, we find that the heat-transfer coefficient ¢y is identical for both plates
and we have the following temperature boundary condition:

de do

Gy = BIO—D when q=1, 5L —Bi(@—]) whean =—1. 3.1)

When solution (1,10) satisfies boundary conditions (3.1) we obtain

d—b e 4 —c 3.2)
A3 ’ B3‘—B1 A3 H

A, =Bi

where ¢ and d are the same as before, and
a’ = Bi Efiza (&) + @174 (8, 5.3)
b = Bif-is (&) + @ips (&), Bg=a'd—Dbc.

It is not difficult to prove that the determinant Ag(®, 7m;) is an even function of the argument 7y the
curves for the limit values of 1y as @ — + « and @— — = are therefore symmetrical with respect to the

axis of ordinates.
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Figure 3 shows the curves for the limit values of 7, for various values of Bi as @ = — , Af the lim-
it, as Bi — «, we have the case of ideal heat transfer to the ambient medium, and the curve for Bi = « co~
incides with the curve in Fig. 1, The maximum of the curves is found on the axis of ordinates and the crit-
ical value of the parameter % is therefore equal to the first root of the equation A;(%, 0) =0, The curve
showing ®* as a function of Bi in semilogarithmic coordinates is shown by the solid line in Fig, 4. As Bi
diminishes the critical value of the parameter ® does likewise and tends to zero as Bi— 0, Sinceat Bi= 0
all the heat evolved remains in the system, the steady~state mode is naturally impossible, It is not diffi-
cult to obtain an approximate equation relating ®* to Bi for small », If in A;(%, 0) we neglect the terms
containing » to a power of over four, we obtain

e/ 2B (3.4)
/ 44Bi-
The relation between ®* and Bi defined by Eq. (3.4) is depicted in Fig. 4 (broken line). The relative

error in determining »* from (3.4) for Bi < 0.4 is less than 1%. With increasing Bi the relative error be-
comes greater and for Bi = = equals 7.1%,.

For the interval 0.4 = Bi < « we can propose the approximate formula

Bi

5054 Bi (3.5)

.

w* =2 ‘/
which over the entire indicated interval makes it possible to determine ®* with a relative error that does
not exceed 19%.

In conclusion let us dwell on the applicability of the derived solution. The solution for the problem
was derived under two major suppositions: the flow is laminar and the viscosity is a hyperbolic function of
temperature, We know that the viscosity of a liquid is described with satisfactory accuracy by this law for
a limited range of temperature variations. Calculations show that with an increase in % the velocities and
the maximum temperature initially change slowly, but as they approach the critical value, in the immediate
vicinity of that value, we note a pronounced increase in the velocities and in the maximum temperature, As
a result, it may turn out that in the vicinity of the critical value of » the Reynolds number will exceed its
critical value and the laminar flow will be disrupted, with the temperature of the liquid in some portion of
the clearance between the plates exceeding the limits of applicability for the hyperbolic law,

It is possible to select such values for the clearance between the plates, as well as for the pressure
difference and the value of the physical constants of the liquid so that the sharp rise in velocities and tem-
peratures will begin before they attain values destroying the laminar nature of the flow and the hyperbolic
function relating viscosity and temperature, A small change in the pressure difference will then corre-
spond to a pronounced variation in temperature and velocity, which may be perceived as a temperature dis-
continuity in the flow regime, The suitability of the solution for fixed values of ® and « should be judged
on the basis of the Reynolds number and on the basis of the maximum heating of the liquid.

NOTATION
v is the velocity;
T, Ty, and T, are the temperatures of the liquid, of the bottom plate, and of the top plate;
A% is the velocity of the top plate;
h is half the distance between the plates;
dp/dx = A is the pressure gradient;
M is the dynamic viscosity of the liquid;
A is the coefficient of thermal conductivity for the liquid;
n is the external normal to the plate;
oy is the coefficient of heat transfer between the liquid and the ambient medium;
J is the mechanical equivalent of heat;
T is the shearing stress;
v is a coordinate;
Yo is the coordinate of the point at which the shearing stress is equal to zero and it is
an integration constant;
w =g /A% v is the dimensionless velocity;
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0 =1+B4T—T, is the dimensionless temperature;

’n:

y/h

is the dimensionless coordinate;

770 = yO/h; E =1Nn— T]o; o= I~L0V/Ah2; X4 = A2h4,82/7\-#0<]—;
©¢g=1+pB%T;~T;) are dimensionless parameters;

M¥
Bi

=1 S G e W
« e s & e s
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is the critical value;
denotes the Biot number,
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