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We examine the nonisothermal  s teady-s ta te  flow of a Newtonian fluid between two paral le l  
plates with considerat ion of the energy dissipation and in the assumption of a hyperbolic r e -  
lationship between v iscos i ty  and tempera ture  under var ious  tempera ture  boundary conditions. 
It is assumed that the upper plate is moving at a constant speed and that there  is a p r e s s u r e  
difference ac ross  the space between the plates in the direction of plate motion. 

The problem of a s teady-s ta te  Couette flow of a viscous liquid with considerat ion of the heat of f r ic -  
tion in the case  of a hyperbolic relationship between the coefficient of v iscos i ty  and tempera ture  is examined 
in a number  of re fe rences  [1-3]. With prec i se ly  this relationship between viscos i ty  and tempera tu re  Hausen- 
bias investigated the dynamic flow of a liquid in a flat tube [4]. In re fe rence  [5], under t empera ture  bound- 
a ry  conditions of the f i rs t  kind, Reg i re r  examined the flow between two paral le l  plates, one of which is 
moving at a constant velocity, while a p r e s s u r e  difference is set up ac ros s  the c learance  in the direction 
of plate motion. The author did not investigate the derived solution. 

It should be noted that in the dynamic flows examined in [4, 5] there is a cr i t ical  value for the p r e s -  
sure  gradient above which it is impossible  to have a s teady-s ta te  regime,  a fact not noted by the authors.  
Kaganov, in [6], was the f i r s t  to draw attention to the poss ib i l i ty  that cr i t ica l  flow regimes  could exist. 
Examining the flow in a flat tube for the general  fo rm of the relationship between v iscos i ty  and temperature ,  
Kaganov employed the methods of integral  analysis  to demonstrate  that this relationship is hyperbolic or 
s t ronger  than hyperbolic;  there exists a cr i t ica l  value for the p r e s s u r e  gradient above which a s teady-s ta te  
flow regime is impossible .  

This paper  is devoted to a study of general ized Couette flow, i . e . ,  the flow of a liquid between two 
paral le l  plates, one of which is moving at a constant velocity, with a p r e s s u r e  gradient  of constant mag-  
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Fig. 1. Limit values of % 
as a function of x: 1) exact 
values; 2) approximate val-  
ues (from (1.16)). 

nitude across  the c learance  between the plate.  It is assumed that the 
v iscos i ty  is a hyperbolic function of t empera ture .  We examine three 
types of t empera tu re  boundary conditions: a) both plates are  kept at con- 
stant t empera tures  that, in the general  case, a re  different; b) the upper 
plate has been thermostated,  with Newtonian heat t r ans fe r  to the ambient 
medium taking place through the bottom plate; c) Newtonian heat t r ans -  
fer  with an identical value for al occurr ing through both plates.  

1. Let a layer  of a viscous liquid be situated between two infinite 
plates y = - h and y = h, the upper plate moving at a constant velocity v 
in the direction of the x-axis .  A p r e s s u r e  gradient constant in magnitude 
is found in the c learance  between the plate, i . e . ,  dp/dx = A > 0. The 
constant t empera tu res  T 1 and T 2 a r e  specified for  the plates.  It is as -  
sumed that the v iscos i ty  is a hyperbolic function of temperature ,  i . e . ,  

~o (1.1) I~ - 1 +[3 ~ (T - -  T2) (Ix~ 13 ---- const). 
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The system of equations of motion and heat balance with consideration of energy dissipation is writ- 
ten in the form 

d dv I d2T [ dv ~ ~ ~ y ( ~ ,  ,, :A, m/-~, + ~ t ~ , ;  :o.  (!.2) 
S y s t e m  (1.2) m u s t  b e  s o l v e d  fo r  the  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s :  

v ~ 0, T = T i wheny = - -  h; v = V, T : T 2 when g = h. (1.3) 

F r o m  the  f i r s t  e q u a t i o n  in  (1.2) we  h a v e  

dv 
= ~ -3~ = J (y - y0). (1.4) 

T h e  s y s t e m  of e q u a t i o n s  (1.2) a n d  the  b o u n d a r y  c o n d i t i o n s  (1.3), w i th  c o n s i d e r a t i o n  of (1.4), c a n  b e  
written in the form 

dw d~O 
d~ : ~0' d T  + •176 = ~ 

W ~ 0 ,  0 = 0 o w h e n ~ =  ~ i = - - l - - ~ l o ;  

W : a ,  0 : ] when~ : ~ 2 :  I--~]o.  

The solution of the second equation in (1.6) is expressed [7] in terms of the Bessel functions 

For the calculations, i t  i s  c o n v e n i e n t  to  p r e s e n t  [7] t he  B e s s e l  f u n c t i o n s  in  (1.7) a s  p o w e r  s e r i e s  

(1.5) 

(i .6) 

(1.7) 

(1 ). 
S <+7. ,1.8, p! , fp (x), fp (x) = kl (p + k) ! 
k~O 

U s i n g  (1.8), we  c a n  w r i t e  s o l u t i o n  (1.7) i n  t he  f o r m  

0 = At~fli4 t ~ -  ~2 § B~f-ll4 %~ , (1.9) 

w h e r e  A 1 a n d  ]31 a r e  n e w  i n t e g r a t i o n  c o n s t a n t s .  U s i n g  t he  b o u n d a r y  c o n d i t i o n s  (1.6), we o b t a i n  

1 

1 [ ' 

H a v i n g  i n t e g r a t e d  the  f i r s t  e q u a t i o n  in  (1.5) and  u s i n g  the  b o u n d a r y  c o n d i t i o n  a t  t he  b o t t o m  p l a t e ,  we o b t a i n  
t he  v e l o c i t y  p r o f i l e  

w = F (~) -- F (~t), (1.11) 

F (~) = Aigv4 (~) + Big-I/4 (~): 

( ') ( 4 k + 3 )  k! k + - ~ -  ! 

i ~2 2 ~ 2k 
- 4 - - ~ )  ; 

0.12) 

where 

gJl4 (D = ~3 ~= 

k=o ( 4 k + 2 )  k ! ( k - - + ) !  
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H a v i n g  s a t i s f i e d  t h e  b o u n d a r y  c o n d i t i o n  a t  t h e  u p p e r  p l a t e  a t  (1.11), we  f i n d  t h e  e q u a t i o n  f o r  t he  d e t e r m i n a -  
t i o n  of t h e  i n t e g r a t i o n  c o n s t a n t :  

F (~9 -- P (~0 = ~ (1.13) 

The temperature and velocity profiles have thus been completely determined. 

The Hausenblas results [4] are derived as a special case of the problem under consideration here, 
when ~= 0 and@0= i. 

Let us turn to an investigation of the derived solutions (1.9) and (1.11). We rewrite expression (1.4) 

for the shearing stress in the form of T/Ah = 77- ~?o. Hence we see that the integration constant 770 is aquan- 

tity which characterizes the shearing stress within the clearance and on the plates. At the same time, 70 

is the ordinate of the point at which the shearing stress vanishes, while the velocity gradient changes sign. 

If the plates are nonmoving (~ = 0) and exhibit identical temperature, then ~?0 = 0, while with various tem- 
peratures for the plate 7/0 ~ 0 is found within the clearance. 

We see from (I.I0), (1.12), and (1.13) that o~-* ~o as the determinant A i tends toward zero. With an 

increase in the plate velocity there will therefore be an increase in ~?0, but it will remain smaller than some 

limit magnitude determined by the first root of the equation A I04, ~?0) = 0. Thus, with an unbounded increase 

in the plate velocity the shearing stress on the plate does not tend toward ~ as in the case of isothermal 

flow, but it tends toward the limit. For pure Couette flow this fact had earlier been established in [i, 2]. 

It should be noted that with a finite value for ~ the quantity ~?0 determined from (1.13) is a function of 

the temperature difference @0 at the boundaries of the region, and the limit value of 70 is independent of 

0 0, since the latter is not included in the expression for the determinant Ai04, ~?0). 

The solid line in Fig. 1 shows ~4 as a function of 70, determined from the transcendental equation 

Ai(~4, 70) = 0. As the point (~4, 70) approaches the curve, the parameter ~-~ - ~. It is not difficult to prove 
that the determinant is an even function of 70. The point on the curve symmetrical with respect to the ~4- 

axis are therefore also roots of the determinant. As the point with the coordinates (~4, -70) approaehesthis 

curve ~ ~ co. With a reduction in ~4 the limit toward which the shearing stress tends as ~-~ • co increases. 

As ~4-~ 0, which corresponds to the isothermal flow, this limit is oo. 

Using the asymptotic expressions of the Bessel functions, it is not difficult to derive an analytical ex- 

pression for the curve that is valid at small values of ~. Using (1.9) and the familiar relationships from 
[7], i.e., 

J p (x) = Jp (x) cos pz~ - -  Np (x) sin p~,  ( - -  x) 1 --  ~x 
- " X!  s i n  ~ X  ' 

w e  c a n  b r i n g  t h e  d e t e r m i n a n t  A i to  t h e  f o r m  

_-- _ _  x 2  ( ~2 ~] (i.14) 

H e r e  N(x) i s  t h e  N e u m a n n  f u n c t i o n .  W e  s e e  f r o m  F i g .  1 t h a t  ~?0 i n c r e a s e s  w i t h  a r e d u c t i o n  in ~ ,  w i t h  t h i s  

c h a n g e  t a k i n g  p l a c e  in  a m a n n e r  s u c h  t h a t  t h e  a r g u m e n t s  f o r  t h e  f u n c t i o n s  in (1.14) i n c r e a s e  w i t h  a r e d u c -  

t i o n  in ~4. U s i n g  t h e  a s y m p t o t i c  e x p r e s s i o n s  f o r  t h e  B e s s e l  a n d  N e u m a n n  f u n c t i o n s  

cos x - -  2 4- ' 

N n (x) = sin x 2 4 ' 

w e  c a n  b r i n g  (1.15) to  t h e  f o r m  

1 
At = _ _  sin 2• . (1.15) 

H e n c e  w e  s e e  t h a t  t h e  r o o t s  of t h e  d e t e r m i n a n t  A~ and,  c o n s e q u e n t l y ,  t h e  l i m i t  v a l u e s  f o r  t h e  s h e a r i n g  

s t r e s s  a r e  found  f r o m  t h e  s i m p l e  r e l a t i o n s h i p  

~1o ==" 2}r �9 (1.16) 
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F i g .  2. C u r v e s  fo r  the  l i m i t  v a l u e s  of 770 at  v a r i o u s  v a l u e s  of Bi:  
1) B i =  0; 2) 1; 3) 10; 4) 100. 

F ig .  3. C u r v e s  f o r  the  l i m i t  v a l u e s  of ~?o f o r  v a r i o u s  v a l u e s  of 
Bi:  1) B i =  0.01; 2) 0.1; 3) 1; 4) 10; 5) 100; 6) oo. 

In Fig. I function (1.16) is shown by a dashed line. We see from the figure that when z = I the eurves dif- 

fer little from each other, while for ~4 < 0.8 they virtually merge. 

It is easy to derive a value of ~r~ at which 70 = i, since in this case ~2 = 0 and the roots ofthe determin- 

ant coincide with the roots of the equation Ji/4(2z 2) = 0. The first root- different from zero- of this equa- 

tion is given by ~t = 1.18. If z < 1.18, for small values of a the point at which the velocity gradient is equal 

to zero is situated within the clearance, while for large values of a it is situated outside of the clearance. 

With z -~ 1.18 it is situated within the clearance for all values of a. 

The curve in the case of 70 = 0 ends at the axis of ordinate at the point which is the first root of the 

equation J-i/4 042/2) = 0. This value of z = ~* = 2 is critical. For all z < ~4" there exists a steady-state 

flow regime, while for ~ - z* a steady-state regime is impossible, and we have a thermal loss of stability. 

As ~4 approaches ~4" there is a pronounced rise in both the temperatures and the velocities. It is interesting 

to note that the critical value of z* is independent both of the temperature difference across the plates and 
of the plate velocity. 

2. Now let the upper plate be thermostated at a temperature T2, and let the transfer of heat with the 

ambient medium according to Newton's law proceed through the lower plate. Assuming that the temperature 

of the ambient medium at considerable distance from the plate is given by T 2, we can write 

dr[' - - a , ( T - -  rz). (2.1) 
' d n  = 

T h e  g e n e r a l  so lu t i on  fo r  the  h e a t - b a l a n c e  equat ion ,  a s  b e f o r e ,  w i l l  be  e x p r e s s e d  in the  f o r m  of (1.9)0 
wh ich  m u s t  b e  m a d e  s u b j e c t  to  the  b o u n d a r y  c o n d i t i o n s  

dO ~ Bi (0 - - I )  when *] = - -  1. (2.2) 0 = 1 when ~] = 1, 

With solution (1.9) satisfying boundary conditions (2.2) we find 

d - - b B i  a B i - - c  
A2 Az , B 2 Az , (2.3) 

w h e r e  

c = Bi ~l f,/4 (~t) - -  q~i/4 (~l); d = Bi f-1/4 (~i) - -  q~-1/4 (~i); 
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k~0 

9--1/4 (~) -- 

�9 ( 2 . 4 )  

k~0 

The  ve loc i ty  p ro f i l e  is  d e t e r m i n e d  f r o m  (1.11), whi le  the i n -  
t e g r a t i o n  c o n s t a n t  ~0 is  ob ta ined  f r o m  (1.13), p rov ided  that  the 
c ons t a n t s  A~ and B~ in  the e x p r e s s i o n  F(~) a r e  r e p l a c e d  by A 2 

and B 2 . 

Unl ike  A t 04, ~0) the d e n o m i n a t o r  A 2 (~, ~?0) i s  not  an even funct ion  of the a r g u m e n t  ~0 and the l im i t  v a l -  
ues  of ~?0 as  ~ ~ + ~ and ~ --* -co  and  f ixed ~4 < ~* t h e r e f o r e  do not  co inc ide .  Fig 'are  2 shows the c u r v e s  
g iv ing  the l i m i t  v a l u e s  of ~?0 as  func t ions  of the p a r a m e t e r  n for  v a r i o u s  v a l u e s  of Bi n u m b e r .  All  of the 
c u r v e s  p a s s  th rough a m a x i m u m  which d e t e r m i n e s  the c r i t i c a l  va lue  of the p a r a m e t e r  ~,  the l e f t -hand  p a r t  
of the c u r v e  d e t e r m i n i n g  the l i m i t  va lues  of ~0 as  c~ ~ + .% and  the r i g h t - h a n d  po r t i on  of the c u r v e  d e t e r -  
m i n i n g  the l i m i t  va lue  as  c~--* _ ~ o  When ~ -> ~4" t h e r e  is  no s t e a d y - s t a t e  r e g i m e .  The ca se  Bi = 0 c o r r e -  
sponds  to s a t i s f a c t i o n  at the lower  p la te  of a b o u n d a r y  condi t ion  of the  second  kind, i . e . ,  an a b s e n c e  of heat  
t r a n s f e r  with the a m b i e n t  m e d i u m .  In the c a s e  of a t h e r m a l l y  i n s u l a t e d  bo t tom p la te  the c r i t i c a l  va lue  is  
g iven  by n*  = 1.35. With an i n c r e a s e  in Bi the c u r v e s  r i s e  and  the apex app roaches  the axis  of o r d i n a t e s .  
At the l i m i t  Bi --* ~ we have  the c a s e  of idea l  hea t  t r a n s f e r  th rough  the bo t tom pla te ,  i . e . ,  the condi t ion  of 

c o n s t a n t  t e m p e r a t u r e  is  s a t i s f i e d  at  the bo t tom p la t e .  

We see  f r o m  (2.4) tha t  the roo ts  of the d e n o m i n a t o r  ~2 at the l i m i t  as  Bi --* ~ co inc ide  with the roo t s  
of the d e n o m i n a t o r  A 1. Even  when Bi = 100 the r i g h t - h a n d  po r t i on  of the c u r v e  is  v i r t u a l l y  co inc iden t  with 
the c u r v e  g iv ing  the func t ions  r e l a t i n g  ~4 and ~?0 in  F ig .  1. It fol lows f r o m  the above that  at the l i m i t  as  

B i - *  co, n *  = 2. 

Thus ,  as  Bi i n c r e a s e s  f r o m  0 to ~ the c r i t i c a l  va lue  of ~4" i n c r e a s e s  f r o m  1.35 to 2. Ca lcu la t ions  
show that  n *  as  a func t ion  of Bi can be  a p p r o x i m a t e d  r a t h e r  wel l  with a s i m p l e  f r a c t i o n a l - l i n e a r  func t ion  

•  = 2,18§ Bi (2.5) 
1.61 + Bi 

The  r e l a t i v e  e r r o r  in  the d e t e r m i n a t i o n  of n *  a c c o r d i n g  to (2.5) for  a l l  v a l u e s  of Bi does not  exceed 

0 . 6 % .  

3. Let us  e x a m i n e  the e a s e  in  which hea t  t r a n s f e r  a c c o r d i n g  to Newton ' s  law (2.1) p r o c e e d s  th rough 
both p l a t e s  to the a m b i e n t  m e d i u m .  A s s u m i n g  that  the t e m p e r a t u r e  of the a m b i e n t  m e d i u m  at  some  d i s -  
t ance  f r o m  the p la te  is  g iven by T 2, we f ind that  the h e a t - t r a n s f e r  coef f ic ien t  oz 1 is  i den t i ca l  for  both p l a t e s  

and we have  the  fo l lowing t e m p e r a t u r e  b o u n d a r y  condi t ion:  

dO 
dO B i ( 0 - -  I) when ~1 ---- 1, - ~ -  = Bi(0- -1)  when ~1 = - - 1 .  (3.1) 
dn 

When so lu t ion  (1.10) s a t i s f i e s  b o u n d a r y  cond i t ions  (3.1) we obta in  

A 3 ---- Bi d - - b '  a ' - - c  (3.2) 
A ~ '  Bz = Bi A3 , 

whe re  e and d a r e  the  s a m e  as  before ,  and 

a' = Bi ~2fl/4 (~2) "Jr- q)l/4 (~2), (3.3) 

b' = Bi f--l/ '4 (~2) .]L q0__i/4 (~2)' A3 = a 'd  - -  b'c. 

It i s  not  d i f f icul t  to p r o v e  that  the d e t e r m i n a n t  A~ (~4, ~0) is  an even  funct ion of the a r g u m e n t  ~0; the  
c u r v e s  for  the l i m i t  v a l u e s  of ~?0 as  ~ --* + ~ and o~ ~ - ,o a r e  t h e r e f o r e  s y m m e t r i c a l  with r e s p e c t  to the 

ax is  of o r d i n a t e s .  
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Figure 3 shows the curves for the limit values of 770 for various values of Bi as ~ -~ - co. At the lim- 

it, as Bi -~ ~, we have the case of ideal heat transfer to the ambient medium, and the curve for Bi = ~ co- 

incides with the curve in Fig. I. The maximum of the curves is found on the axis of ordinates and the crit- 

ical value of the parameter ~ is therefore equal to the first root of the equation A304, 0) = 0. The curve 

showing ~4" as a function of Bi in semilogarithmic coordinates is shown by the solid line in Fig. 4. As Bi 

diminishes the critical value of the parameter ~ does likewise and tends to zero as Bi --~ 0. Since at Bi = 0 

all the heat evolved remains in the system, the steady-state mode is naturally impossible. It is not diffi- 

cult to obtain an approximate equation relating ~4" to Bi for small ~4. If in As04, 0} we neglect the terms 

containing ~ to a power of over four, we obtain 

4 / 
• = ~t// 12Bi (3.4) 

4 - } - B i  " 

The relation between ~r and Bi defined by Eq. (3.4) is depicted in Fig. 4 (broken line). The relative 

error in determining ~4" from (3.4) for Bi < 0.4 is less than 1%. With increasing Bi the relative error be- 

comes greater and for Bi = ~ equals 7.1%. 

For the interval 0.4 -< Bi < ~ we can propose the approximate formula 

4/ Bi 
• =2  ~ 5.05+ Bi ' (3.5) 

which over the entire indicated interval makes it possible to determine ~* with a relative error that does 

not exceed 1%. 

In conclusion let us dwell on the applicability of the derived solution. The solution for the problem 

was derived under two major suppositions: the flow is laminar and the viscosity is a hyperbolic function of 

temperature. We know that the viscosity of a liquid is described with satisfactory accuracy by this law for 

a limited range of temperature variations. Calculations show that with an increase in ~ the velocities and 

the maximum temperature initially change slowly, but as they approach the critical value, in the immediate 

vicinity of that value, we note a pronounced increase in the velocities and in the maximum temperature. As 

a result, it may turn out that in the vicinity of the critical value of Y~ the Reynolds number will exceed its 

critical value and the laminar flow will be disrupted, with the temperature of the liquid in some portion of 

the clearance between the plates exceeding the limits of applicability for the hyperbolic law. 

It is possible to select such values for the clearance between the plates, as well as for the pressure 

di f fe rence  and the value of the phys i ca l  cons tan t s  of the l iquid so that  the sharp  r i s e  in ve l oc i t i e s  and t e m -  
p e r a t u r e s  wil l  begin be fo re  they a t ta in  va lues  des t roy ing  the l a m i n a r  na ture  of the flow and the hyperbo l i c  
function re l a t ing  v i s c o s i t y  and t e m p e r a t u r e .  A s m a l l  change in the p r e s s u r e  d i f fe rence  wil l  then c o r r e -  
spond to a pronounced va r i a t i on  in t e m p e r a t u r e  and veloci ty ,  which may be p e r c e i v e d  as  a t e m p e r a t u r e  d i s -  
cont inui ty  in the flow r e g i m e .  The su i t ab i l i ty  of the solution for  f ixed va lues  of ~ and c~ should be judged 
on the b a s i s  of the Reynolds  number  and on the b a s i s  of the maxi raum heat ing of the l iquid.  

V 

T, T l, and T 2 
V 
h 
dp/dx - A 

# 
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n 
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w = ~o/Ah 2 v 

NOTATION 

is  the veloci ty;  
a r e  the t e m p e r a t u r e s  of the liquid, of the bot tom plate ,  and of the top plate;  
i s  the ve loc i ty  of the top plate;  
is  half  the d i s tance  between the p la tes ;  
is  the p r e s s u r e  gradient ;  
is  the dynamic v i s c o s i t y  of the liquid; 
is  the coeff ic ient  of t h e r m a l  conduct ivi ty  for  the liquid; 
~s the ex te rna l  n o r m a l  to the plate;  
~s the coeff ic ient  of heat  t r a n s f e r  between the l iquid and the ambient  medium; 
~s the mechan ica l  equivalent  of heat; 
i s  the shea r ing  s t r e s s ;  
is  a coord ina te ;  
is  the coord ina te  of the point  at which the shea r ing  s t r e s s  is  equal to ze ro  and i t  is  

an in tegra t ion  constant;  
is  the d imens ion l e s s  ve loci ty ;  
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O = 1 + ]32(T - T2) is  the d imens ion less  t empe ra tu r e ;  
71 = y/h is  the d imens ion less  coordinate;  
7/0 = Yo/h; ~ = ~7 -- 7/0; o~ = #oV/Ah2; x 4 = A2h4fi2/X#oJ; 
@0 = 1 + fi2(T I - T2) are dimensionless parameters ;  
~* is the cr i t ical  value; 
Bi denotes the Biot number.  
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